Ви переглядаєте архівну версію офіційного сайту НУЛП (2005-2020р.р.). Актуальна версія: https://lpnu.ua
Advanced Mathematics
Major: Computer sciences
Code of Subject: 6.122.00.O.8
Credits: 4
Department: Mathematics
Lecturer: Zinovij Nytrebych
Semester: 1 семестр
Mode of Study: денна
Learning outcomes:
As a result of the study of the discipline, the student must be able to demonstrate the following learning outcomes:
1. Solve differential equations with separable variables.
2. Solve linear differential equations and Bernoulli's equations.
3. Solve exact differential equations.
4. Solve higher-order differential equations whose order can be reduced.
5. Solve linear differential equations with constant coefficients.
6. Solve systems of linear differential equations with constant coefficients.
1. Solve differential equations with separable variables.
2. Solve linear differential equations and Bernoulli's equations.
3. Solve exact differential equations.
4. Solve higher-order differential equations whose order can be reduced.
5. Solve linear differential equations with constant coefficients.
6. Solve systems of linear differential equations with constant coefficients.
Required prior and related subjects:
- Discrete Mathematics
- Mathematical Analysis, Part 1
- Mathematical Analysis, Part 2
- Linear Algebra and Analytic Geometry.
- Mathematical Analysis, Part 1
- Mathematical Analysis, Part 2
- Linear Algebra and Analytic Geometry.
Summary of the subject:
The course "Differential Equations" consists of sections: "First-order differential equations", "Higher-order differential equations", "Elementary theory of linear n-th order differential equations", "Systems of ordinary differential equations", "Elements of stability theory", "Equation of Mathematical Physics".
Recommended Books:
1. Шкіль М.І., Сотниченко М.А. Звичайні диференціальні рівняння.-Київ; Вища математика. 1992.
2. Ляшко І.І. та ін. Диференціальні рівняння. - К.: Вища школа, 1981.
3. Бугров Я.С., Никольский С.М. Дифференциальные уравнения. Ряды. Кратные интегралы. Функции комплексного переменного.-М.: Наука, 1989.
4. Пискунов Н.С. Дифференциальное и интегральное исчисления для втузов. Т. 2.-М.: Наука, 1986.
5. Краснов М.Л. Обыкновенные дифференциальные урвавнения.-М: Высшая школа, 1983.
6. Вища математика: основні означення, приклади і задачі. /Ред. Кулинич Г.Л. Ч. 1.2-К: Либідь, 1992.
7. Краснов М.Л., Кисилев А.И., Макаренко Г.И. Сборник задач по обыкновенным дифференциальным уравнениям.-М: Высшая школа, 1978.
8. Филиппов В.Г. Сборник задач по обыкновенным дифференциальным уравнениям.-М: Высшая школа, 1980.
2. Ляшко І.І. та ін. Диференціальні рівняння. - К.: Вища школа, 1981.
3. Бугров Я.С., Никольский С.М. Дифференциальные уравнения. Ряды. Кратные интегралы. Функции комплексного переменного.-М.: Наука, 1989.
4. Пискунов Н.С. Дифференциальное и интегральное исчисления для втузов. Т. 2.-М.: Наука, 1986.
5. Краснов М.Л. Обыкновенные дифференциальные урвавнения.-М: Высшая школа, 1983.
6. Вища математика: основні означення, приклади і задачі. /Ред. Кулинич Г.Л. Ч. 1.2-К: Либідь, 1992.
7. Краснов М.Л., Кисилев А.И., Макаренко Г.И. Сборник задач по обыкновенным дифференциальным уравнениям.-М: Высшая школа, 1978.
8. Филиппов В.Г. Сборник задач по обыкновенным дифференциальным уравнениям.-М: Высшая школа, 1980.
Assessment methods and criteria:
Student knowledge testing is carried out by means of oral questioning in practical classes, control and independent work in the virtual of learning environment, the terminologicals of dictations, individual calculation and graphic works.
Current control - 30 points;
Examination Control - 70 points;
Total for discipline - 100 points.
Current control - 30 points;
Examination Control - 70 points;
Total for discipline - 100 points.