Ви переглядаєте архівну версію офіційного сайту НУЛП (2005-2020р.р.). Актуальна версія: https://lpnu.ua

Вища математика. частина1

Major: Геодезія та землеустрій
Code of Subject: 6.193.00.O.4
Credits: 5
Department: Картографія та геопросторове моделювання
Lecturer: к.ф.-м.н., доцент Фис Михайло Михайлович, к.ф.-м.н., доц. Прохоренко Мирослава Володимирівна
Semester: 1 семестр
Mode of Study: заочна
Learning outcomes:
• застосування знань з теорії матриць та визначників для розв'язування систем лінійних алгебраїчних рівнянь та задач векторної алгебри;
• використання вмінь та навиків з аналітичної геометрії на площині та в просторі;
• здатність використовувати знання теорії функції однієї та багатьох змінних;
• розуміння основних положень теорії диференціального числення функцій однієї змінної та застосування цих знань для дослідження плоских і просторових кривих.
Required prior and related subjects:
• Інформатика та програмування геозадач.
Summary of the subject:
Елементи лінійної алгебри (Матриця. Ранг матриці. Визначник. Обернена матриця. Система лінійних алгебраїчних рівнянь. Вектори). Аналітична геометрія на площині та в просторі (Пряма на площині. Криві другого порядку. Площина. Пряма в просторі. Пряма і площина. Поверхні другого порядку). Функції однієї змінної (Множини чисел. Комплексні числа. Функція. Числова послідовність. Границя функції. Неперервність функцій). Похідна функції однієї змінної та її диференціал (Похідна функції. Правила диференціювання функції. Похідні вищих порядків. Диференціал функції. Диференціали вищих порядків. Формула Тейлора). Застосування похідних функцій однієї змінної (Теореми Ролля, Лагранжа та Коші. Правило Лопіталя. Монотонність функції. Ознаки монотонності. Екстремум функції. Найбільше та найменше значення функції на відрізку. Опуклість та вгнутість графіка функції. Повне дослідження функції).
Recommended Books:
1. Ефимов Н.В. Краткий курс аналитической геометрии, М.: Наука, 1969. – 272с.
2. Рудавський Ю.К., Костробій П.П., Луник Ф.П., Уханська Д.В. Лінійна алгебра та аналітична геометрія, Л.: Бескид Біт, 2002. – 262с.
3. Шкіль М.І., Колесник Т.В. Вища математика. – К. Вища школа, 1986.
Assessment methods and criteria:
• Робота на практичних заняттях, усне, комбіноване та фронтальне опитування, контрольні роботи (30%).
• Підсумковий контроль (іспит): письмово-усна форма (70%).