Ви переглядаєте архівну версію офіційного сайту НУЛП (2005-2020р.р.). Актуальна версія: https://lpnu.ua

Основи штучного інтелекту

Спеціальність: Комп'ютерні науки
Код дисципліни: 6.122.00.O.89
Кількість кредитів: 6
Кафедра: Автоматизовані системи управління
Лектор:
Семестр: 5 семестр
Форма навчання: заочна
Результати навчання:
Необхідні обов'язкові попередні та супутні навчальні дисципліни:
Короткий зміст навчальної програми:
Рекомендована література:
Методи і критерії оцінювання:

Основи штучного інтелекту

Спеціальність: Комп'ютерні науки
Код дисципліни: 6.122.00.O.90
Кількість кредитів: 6
Кафедра: Системи автоматизованого проектування
Лектор:
Семестр: 5 семестр
Форма навчання: заочна
Результати навчання:
Необхідні обов'язкові попередні та супутні навчальні дисципліни:
Короткий зміст навчальної програми:
Рекомендована література:
Методи і критерії оцінювання:

Основи штучного інтелекту

Спеціальність: Комп'ютерні науки
Код дисципліни: 6.122.00.O.91
Кількість кредитів: 6
Кафедра: Системи штучного інтелекту
Лектор: Засоба Є.
Семестр: 5 семестр
Форма навчання: заочна
Результати навчання:
знати:
? здатність продемонструвати поглиблені знання принаймні в одній з областей
інформаційних технологій;
? здатність продемонструвати знання та навики щодо проведення експериментів,
збору даних та моделювання у предметній області;

вміти:
- здатність створювати математичні моделі і алгоритми прийняття рішень за допомогою
алгоритмічного та програмного забезпечення, використовуючи машинне навчання,
штучні нейронні мережі, еволюційне моделювання, генетичні методи оптимізації,
фільтри
Необхідні обов'язкові попередні та супутні навчальні дисципліни:
Дискретна математика
Короткий зміст навчальної програми:
Основні поняття інтелектуальних систем. Архітектура інтелектуальних систем. Формальне означення інтелектуальних систем. Функціональна модель інтелектуальних систем. Моделі подання знань та механізми логічного виведення. Виявлення логічних закономірностей в даних. Дерева прийняття рішень . Штучні нейронні мережі. Генетично-адаптивні алгоритми. Моделювання нечіткостей в інтелектуальних системах. Ускладнене подання знань із врахуванням фактору невизначеності . (Нечітка логіка. Нечіткі множини. Коефіцієнти впевненості. Зважування тверджень. Байесівський підхід.)
Рекомендована література:
1. www.intuit.ru – Национальный открытый университет
2. Шитиков В.К., Мастицкий С.Э. (2017) Классификация, регрессия и другие алгоритмы
Data Mining с использованием R. 351 с. – Электронная книга, адрес доступа:
https://github.com/ranalytics/data-mining
3. http://itacademy.microsoftelearning.com/ - Інтерактивне навчання за програмою Microsoft IT
Academy.
Методи і критерії оцінювання:
40 - лабораторні роботи
10 - розрахункова робота
50 - екзамен