Ви переглядаєте архівну версію офіційного сайту НУЛП (2005-2020р.р.). Актуальна версія: https://lpnu.ua
Спецкурси з наукових досліджень спеціалізації
Спеціальність: Комп'ютерні науки (освітньо-наукова програма)
Код дисципліни: 7.122.00.O.26
Кількість кредитів: 9
Кафедра: Автоматизовані системи управління
Лектор:
Семестр: 3 семестр
Форма навчання: денна
Результати навчання:
Необхідні обов'язкові попередні та супутні навчальні дисципліни:
Короткий зміст навчальної програми:
Рекомендована література:
Методи і критерії оцінювання:
Спецкурси з наукових досліджень спеціалізації
Спеціальність: Комп'ютерні науки (освітньо-наукова програма)
Код дисципліни: 7.122.00.O.27
Кількість кредитів: 9
Кафедра: Системи автоматизованого проектування
Лектор:
Семестр: 3 семестр
Форма навчання: денна
Результати навчання:
Необхідні обов'язкові попередні та супутні навчальні дисципліни:
Короткий зміст навчальної програми:
Рекомендована література:
Методи і критерії оцінювання:
Спецкурси з наукових досліджень спеціалізації
Спеціальність: Комп'ютерні науки (освітньо-наукова програма)
Код дисципліни: 7.122.00.O.28
Кількість кредитів: 9
Кафедра: Системи штучного інтелекту
Лектор:
Р.Я.Косаревич
Семестр: 3 семестр
Форма навчання: денна
Результати навчання:
У результаті вивчення навчальної дисципліни студент повинен бути здатним продемонструвати такі результати навчання:
знати: області застосування і основні прикладні аспекти машинного навчання; основні поняття та принципи роботи штучних нейронних мереж; постановку задачі та основні методи обробки природної мови; вміти: грамотно формулювати постановку задач, що виникають у практичній діяльності, для їх розв’язання за допомогою методів машинного навчання; проводити аналіз конкретної задачі для вибору найкращого методу машинного навчання для її розв'язку; проводити аналіз та синтез інформативних ознак; проводити аналіз роботи методів машинного навчання з виявленням їх сильних і слабких сторін
знати: області застосування і основні прикладні аспекти машинного навчання; основні поняття та принципи роботи штучних нейронних мереж; постановку задачі та основні методи обробки природної мови; вміти: грамотно формулювати постановку задач, що виникають у практичній діяльності, для їх розв’язання за допомогою методів машинного навчання; проводити аналіз конкретної задачі для вибору найкращого методу машинного навчання для її розв'язку; проводити аналіз та синтез інформативних ознак; проводити аналіз роботи методів машинного навчання з виявленням їх сильних і слабких сторін
Необхідні обов'язкові попередні та супутні навчальні дисципліни:
Дискретна математика
Математичний аналіз
Лінійна алгебра
Теорія ймовірності
Математична статистика
Математичний аналіз
Лінійна алгебра
Теорія ймовірності
Математична статистика
Короткий зміст навчальної програми:
Мета вивчення дисципліни полягає у отриманні необхідних знань і
набутті практичних умінь і навичок застосування широкого кола методів та алгоритмів аналізу інформації у контексті машинного сприйняття та навчання для розуміння питань побудови, функціювання та експлуатації комп’ютерних систем та мереж, а також різних систем обробки інформації та керування на їх
основі.
Рекомендована література:
Stephen Marsland. Machine Learning). Лінійна: An Alg). Лінійнаorithmic Perspective, 452 р.,
2015.
Ethem Alpaydin. Introduction To Machine Learning). Лінійна, 584 p., 2009.
Tom M. Mitchell. Machine Learning). Лінійна
[http://www.cs.cmu.edu/~tom/mlbook.html]
Stephen Marsland. Machine Learning). Лінійна: An Alg). Лінійнаorithmic Perspective, 452 р.,
2015.
Ethem Alpaydin. Introduction To Machine Learning). Лінійна, 584 p., 2009.
Tom M. Mitchell. Machine Learning). Лінійна
[http://www.cs.cmu.edu/~tom/mlbook.html]
Методи і критерії оцінювання:
Поточний контроль (ПК)
Лабораторні роботи 40 балів
Екзаменаційний контроль
Письмова компонента 60 балів
Усна компонента
Разом 100 балів
Лабораторні роботи 40 балів
Екзаменаційний контроль
Письмова компонента 60 балів
Усна компонента
Разом 100 балів